Topics in the June 2013 Exam Paper for CHEM1102

Click on the links for resources on each topic.

2013-J-2:

- Metals in Biology
- Coordination Chemistry

2013-J-3:

- Weak Acids and Bases
- Calculations Involving pKa

2013-J-4:

• Periodic Trends in Aqueous Oxide

2013-J-5:

- Weak Acids and Bases
- Calculations Involving pKa
- Solubility Equilibrium

2013-J-6:

Crystal Structures

2013-J-7:

- Physical States and Phase Diagrams
- Intermolecular Forces and Phase Behaviour

2013-J-8:

Kinetics

2013-J-9:

- Alcohols
- Alkenes
- Organic Halogen Compounds
- Carboxylic Acids and Derivatives

2013-J-10:

Alkenes

2013-J-11:

Stereochemistry

2013-J-12:

Stereochemistry

2013-J-13:

• Synthetic Strategies

2013-J-14:

Carboxylic Acids and Derivatives

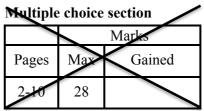
THE UNIVERSITY OF SYDNEY

<u>CHEMISTRY 1B - CHEM1102</u> FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2013

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

Ī	FAMILY	SID	
	NAME	NUMBER	
	OTHER	TABLE	
	NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, University-approved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	8			
12	4			
13	4			
14	6			
15	2			
16	7			
17	6			
18	9			
19	3			
20	7			
21	5			
22	5			
23	6			
Total	72			
Check Total				

•	Use the information already provided to complete the following table.
	$(ox = oxalate = C_2O_4^{2-})$

Marks 8

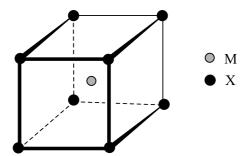
Formula	$[CrCl_2(NH_3)_4]^n$	[Fe(ox) ₃] ⁿ	$[ZnCl_2(NH_3)_2]^n$
Oxidation state of transition metal ion		+III	
Number of <i>d</i> -electrons in the transition metal ion			10
Number of unpaired d-electrons in the transition metal ion			
Charge of complex (i.e. n)	1+		
Is the metal atom paramagnetic?			

The complex $[PtCl_2(NH_3)_2]$ has two isomers, while its zinc analogue (in the table) exists in only one form. Using diagrams where appropriate, explain why this is so.

CHEM1102 2013-J-3 June 2013

•	What is the pH of a 0.1 M solution of amr is 1.8×10^{-5} .	monium chloride, given the K_b for ammonia
	Ī	
		pH =
	What is the ratio of ammonia to ammoniu	am ion in this solution?
	ī	
		Answer:

CHEM1102 2013-J-4 June 2013


Describe the periodic trends exhibited by atomic radii. Justify these trends in terms of principal quantum number, n , and effective nuclear charge, Z_{eff} .	Mark 2
Giving reasons, order either the set of oxyacids or the binary acids in terms of increasing acidity.	2
HClO, HClO ₂ , HClO ₃ , HClO ₄ or H ₂ O, H ₂ S, H ₂ Se, H ₂ Te	

CHEM1102 2013-J-5 June 2013

•	What is the pH of a solution which is 0.10 The K_a for acetic acid is 1.8×10^{-5} .	0 M in both acetic acid and sodium acetate?	Marks 4
		Answer:	
	What is the final pH if 0.010 mol of HCl	is added to 1.0 L of the above solution?	
		Answer:	_
•	The $K_{\rm sp}$ for Fe(OH) ₃ is 2.64×10^{-39} . Wha	at is its molar solubility in water?	2
		Answer:	

• The unit cell below has a cation (M) at the centre of the cell and anions (X) at the corners.

Marks 2

What is the formula of the compound?

What is the coordination number of each type of ion?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•	A phase diagram of water is shown below.	Marks 7
	B 4 C (374 °C, 218 atm) A (0.01 °C, 0.00603 atm) Temperature	
	Identify the four phases shown as 1-4 in the phase diagram.	
	1: 2:	
	3: 4:	
	What are the phase changes highlighted by the forward and reverse arrows called?	
	Forward: Reverse:	
	What names are given to the points A and C?	
	A: C:	
	The boundary line A-B is slightly tilted to the left. What are the physical and biological significances of this?	
	What are the physical characteristics of water in phase 4?	

•	Given the following experimental data, find the rate law and the rate constant for the
	following reaction:

Marks 3

$$\mathrm{NO}(g) \,+\, \mathrm{NO}_2(g) \,+\, \mathrm{O}_2(g) \,\rightarrow\, \mathrm{N}_2\mathrm{O}_5(g)$$

Run	[NO(g)] / M	$[NO_2(g)]/M$	$\left[\mathrm{O}_{2}(\mathrm{g})\right] /\mathrm{M}$	Rate / M s ⁻¹
1	0.10	0.10	0.10	2.1×10^{-2}
2	0.20	0.10	0.10	4.2×10^{-2}
3	0.20	0.30	0.20	1.26×10^{-1}
4	0.10	0.10	0.20	2.1×10^{-2}

• The rate constant for a reaction is $5.0 \times 10^{-3} \text{ s}^{-1}$ at 215 °C and $1.2 \times 10^{-1} \text{ s}^{-1}$ at 452 °C. What is the activation energy of the reaction in kJ mol⁻¹?

Answer:

What is the rate constant for this reaction at 100 °C?

Answer:

3

9

• Complete the following table.

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
ОН		0
	dilute H ₂ SO ₄	
Br	hot conc. KOH in ethanol solvent	
ОН		Cl
	H ₂ , Pd/C	
MgBr	 CO₂ H[⊕]/H₂O 	
0		Н N + СН ₃ ОН
0	OH [⊖] / H ₂ O / heat	

• When alkene A is reacted with HBr, the major reaction product is B . However, a minor product, C , is also formed that is isomeric with B .				Mi	
	HBr→	Br	+	C (minor)	
A		B (major)			
What is the structure of	f product C?				
By describing an interreformed than B .	nediate formed in t	his reaction, exp	olain wh	y less of C is	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•	Shown below is a	reaction sequence	beginning with	the chiral alcohol, F.

Draw the enantiomer of **F**.

The specific optical rotation of \mathbf{F} is +24°. What is the optical rotation of a mixture consisting of equal amounts of \mathbf{F} and its enantiomer?

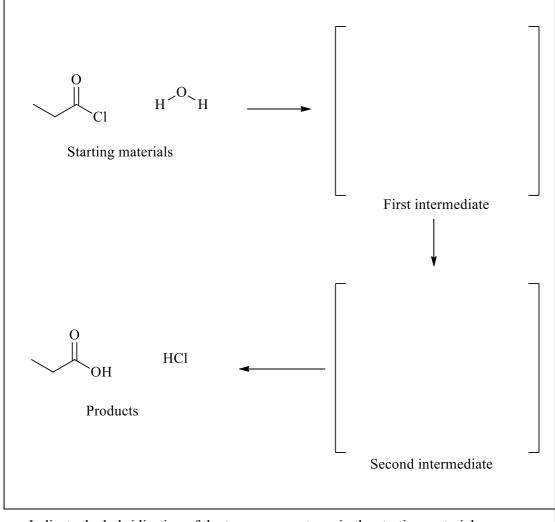
Assign the stereochemistry of the atom in alcohol **F** indicated by the asterisk (*), showing how you arrived at your answer.

Alcohol F is oxidised to give the corresponding ketone, G. Is this molecule still chiral? Why/why not? Explain your answer.

Ketone **G** is reduced with sodium borohydride, to give a mixture of two alcohols, **F** and **H**. **H** is a diastereomer of **F**. Draw the diastereomer **H**. What is the expected ratio of alcohols **F** and **H** in this mixture? Why?

Marks 7

• Below is the structure of an ether, J .	Ma
\sim 0 \sim J	
Draw a constitutional isomer of J .	
Draw a conformational isomer of J .	
There are no configurational isomers of J . Why not?	
Below is the structure of an alkene, \mathbf{K} , which <i>does</i> have a configurational isomer.	
K K	
Draw this configurational isomer.	
Name K , making sure your name distinguishes K from its isomer.	


• Devise a synthesis of the alkene **M** using 2-bromobutane (**L**) and acetone (propanone) as starting materials. Show all relevant intermediates and reagents.

Marks 5

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Below is the reaction between an acid chloride and water to give a carboxylic acid. Provide curly arrows for this mechanism and draw the structures of the two intermediates on the pathway.

Marks 6

Indicate the hybridisation of the two oxygen atoms in the starting materials.

acid chloride: water:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa} = 1.013 \text{ bar}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$0 \text{ °C} = 273 \text{ K}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

$$1 \text{ L} = 10^{-3} \text{ m}^{3}$$

$$1 \text{ tonne} = 10^{3} \text{ kg}$$

$$1 \text{ W} = 1 \text{ J s}^{-1}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	M
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p	10^{12}	tera	T

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{1000} \log Q \text{ (at 25 °C)}$
$T\lambda = 2.898 \times 10^6 \text{ K nm}$	n nogg (w. 25 °C)
Acids and Bases	Gas Laws
$pH = -log[H^+]$	PV = nRT
$pK_{w} = pH + pOH = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pK_{w} = pK_{a} + pK_{b} = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = Ae^{-Ea/RT}$
$\ln(N_0/N_{\rm t}) = \lambda t$	$ \ln[A] = \ln[A]_0 - kt $
14 C age = 8033 $\ln(A_0/A_t)$ years	$\ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P_{\text{solvent}}^{\circ}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\mathrm{univ}} S^{\circ} = R \ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$ \ln x = 2.303 \log x $
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2
$4\pi\varepsilon_0 r$	Surface area of sphere = $4\pi r^2$

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$NO_3^-(aq) + 10H^+(aq) + 8e^- \rightarrow NH_4^+(aq) + 3H_2O$	+0.88
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$BiO^{+}(aq) + 2H^{+}(aq) + 3e^{-} \rightarrow Bi(s) + H_{2}O$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.126
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.136
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$	-0.28
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	-2.09
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04

PERIODIC TABLE OF THE ELEMENTS

ACTINOIDS	LANTHANOID S	1 INDESCRIAN H 1.008 3 LITHIUM Li 6.941 1 1 1 SODIUM Na 222.99 1 9 POTASSIM K 39.10 37 RUBIDIUM K 39.10 37 RUBIDIUM K 37.55 CAESSUM C'S 132.91 87 FRANCIUM Fr	1
	57 ID LANTHANU La 138.91	4 BERYLLIUM Be 9.012 12 12 MACHESIUM Mg 24.31 20 CALCIUM Ca 40.08 38 STRONTIUM Sr 87.62 56 IMBIRIM Ba 137.34 88 RADIUM Ra 1226.01	2
		21 Sc. 44.96 44.96 39 YTTRHUM Y 88.91 57-71 57-71	ယ
90 Th Th 232.04		22 TITANUM Ti 47.88 40 Zir 91.22 72 1.78.49 1.78.49 1.04 RITHERORDHIN Rf [263]	4
91 Pa Pa [231.0]	59 Pr 140.91	23 VANADIUM V 50.94 41 NOBROM Nb 92.91 73 TAB 180.95 105 DUBNICM Db [268]	Ŋ
92 URANIUM U 238.03	60 NEODYMIUM Nd 144.24	24 СПВОМИМ СТ 52.00 42 МО 95.94 74 ПОСТ 1106 Вълиовения Sg [271]	6
93 NEPTUNIUM Np [237.0]	61 Pm [144.9]	25 MANGANESS Mn 54.94 43 Tc [98.91] 75 Ree [186.2 107 Bodieum Bh [274]	7
94 Pu [239.1]	62 Sm 150.4	26 BROW Fe 55.85 44 RETHENIUM Ru 101.07 76 OSNIUM OS 190.2 108 INSSIUM HS [270]	∞
95 AMERICIUM Am [243.1	63 EUROPHUN Eu 151.96	27 COBALT CO 58.93 45 RHODENN Rh 102.91 77 IRIDUEN 17 192.22 109 MET NERUM Mt [278]	9
96 Cm [247.1]	64 GADOLIN G157.2	28 NICKEL Ni 58.69 46 PALLADIUM Pd 1106.4 78 PATRIUM Pt 195.09 110 DARMSTADIUM DS [281]	10
	_	29 COPPER Cu 63.55 47 81.VER Ag 107.87 79 cold Au 196.97 111 ROENTGENUM Rg [281]	11
97 BERKELLIUM C. Bk [247.1] [30 znc Zn 65.39 48 Cadmin Cd 112.40 80 Meccury Hg 200.59 112 coperations	12
98 CALIFORNUM Cf [252.1]		5 BOTON B 10.81 13 13 13 ALIMINIUM AI 26.98 31 69.72 49 INDITION 114.82 81 TRALLIUM TO 204.37	13
99 ENSTEINIUM ES [252.1]	67 Но 164.93	6 CARBOON C 12.01 14 14 SILICON Si 28.09 32 GERMANION Ge 72.59 50 IN Si 1118.69 207.2 114 PLEROVINA PLEROVINA FILEROVINA [289]	14
100 FERMIUM Fm [257.1]	68 Er 167.26	7 NITROGEN N 14.01 15 15 15 PHOSTHORIES P 30.97 74.92 51 ANTINONY Sb 121.75 83 BSSHUTH Bi 208.98	15
101 MENDELEVIUM Md [256.1]	69 Тт 168.93	8 0 0 16.00 16.00 16 811210 S 32.07 34 SELENIUM Se 78.96 78.96 127.60 84 PO 1210.01 116 LIVERMORIUM 1293	16
102 NOBELIUM No [259.1]	70 Yterbium Yb 173.04	9 PLIORINE F 19.00 17 CILORINE CI 35.45 35 BROWINE Br 79.90 53 1000NE I 126.90 85 ASTAINE At [210.0]	17
103 LAWRENCIUM Lr [260.1]	71 Lutetium Lu 174.97	2 III.30 Ne 4.003 10 Ne 20.18 18 Ar 39.95 36 Kerton Kr 83.80 54 Xe 131.30 86 Radon Rn [222.0]	18